
 
 
 
 
 
 
 
 

Price cap regulation in the postal sector:   
single vs multiple baskets1  

 
 
 

Claire Borsenberger*, Sébastien Bréville†, Helmuth Cremer‡, 
Philippe De Donder§ and Denis Joram** 

 
 
 
 
 

May 2011, revised July 2011 
 

                                                 
* La Poste 
† La Poste 
‡ IDEI, Toulouse School of Economics 
§ IDEI, Toulouse School of Economics 
** La Poste 



 
 

1 INTRODUCTION 

Starting in the mid-1980’s, many incumbents have become subject to price caps. Roughly 
speaking, a price cap defines an average price level not to be exceeded by the operator. The 
operator is otherwise free to adjust the relative prices of its different products. Price cap 
regulation is an extreme form of incentive regulation which provides powerful incentives for 
cost reduction. The system is also intended to reduce political interference in the setting of 
individual prices and the resulting price flexibility may also enable incumbent operators to 
become more business oriented. While their average price is capped by the regulator, they 
could adjust the prices of their different products to reflect costs, elasticity of demand, 
complementarities between segments, and competitive pressure.  

 In the postal sector, price cap schemes are by now widely used. However, in reality 
their design differs, often significantly, from the idealized policy just described. In particular, 
regulators very often are tempted to add additional constraints limiting price variations of so-
called sub-baskets. This is justified by the need to offer special protection to some group of 
customers who for a variety of reasons may receive an extra weight in the regulator’s 
objective. For instance, the regulator may want to restrict the increase in single-piece rates. In 
addition, it is sometimes argued that sub-baskets may restrict the incumbent’s ability to 
engage in anti-competitive behavior (e.g. “squeezing” competitor’s markups).  

In this chapter, we examine the design of price cap schemes in the postal sector. In 
particular, we analyze whether or not it is appropriate to impose sub-baskets. First, we  
analyze a setting where some customers (or products) receive an extra weight in the 
regulator’s objective and study to what extent this provides an argument for the imposition of 
extra constraints. The literature has shown that a global price cap can be used to decentralize 
Ramsey prices (that maximize unweighted surplus). We show that this result can be 
generalized in a variety of directions including welfare weights and the presence of 
competition. Second, we examine the role of demand uncertainty, which is certainly a major 
feature in today’s postal markets. Sub-baskets introduce ex ante constraints on the pricing 
structure, which can prevent the operator from abusing market power in some states of nature. 
On the other hand, they reduce the possibility ex post to adapt relative prices to the realized 
structure of demand. We show that while the overall effect appears to be ambiguous, a 
number of arguments argue against the imposition of sub-baskets. In particular, we show that 
ex ante constraints tend to increase the overall price level.  

The analysis thus leads to similar conclusions and argues in favor of a price-cap with a 
single basket. In other words, the constraint caps the (appropriately weighted) average price 
of all the regulated products. In either case, we restrict ourselves to the simplest possible 
model that can represent the main effects and tradeoffs involved. In particular, we assume for 
notational convenience that the operator sells only two products and we ignore dynamic issues 
(multi-period tradeoffs). The generality of our results will be discussed in detail below. 

The remainder of this chapter is organized as follows. Section 2 studies the impact of 
welfare weights on Ramsey prices and on their decentralization through a price cap. Section 3 
examines the effect of demand uncertainty. Finally, section 4 concludes.     

 
 

2 REDISTRIBUTION AND WELFARE WEIGHTS 
 

In regulation models (and more generally in the industrial economics literature), welfare is 
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often measured by total surplus. This approach relies on a number of implicit or explicit 
assumptions (like the quasi linearity of preferences). Most significantly, it also assumes that 
the regulator is concerned with efficiency only. This simple setting is most useful to address 
many of the relevant issues. However, in reality, issues of redistribution, fairness or equity are 
omnipresent in the regulatory debate. In this section, we study how such a concern for 
redistribution affects the design of price-cap regulation. To do so, we assume that the 
regulator maximizes a weighted sum of individual utilities (surpluses). Specifically, the 
consumers of some type of product receive a larger weight. This relies on a very stylized view 
of the postal sector. There are two postal products (say single-piece and bulk mail) and two 
types of customers (say households and firms). Households consume single-piece mail while 
firms send bulk mail. For some reason, the welfare function puts a larger weight on 
households than on firms so that the regulator will be particularly concerned by the single 
piece rate. We examine if this concerns requires a specific regulation of each price or whether 
a price-cap specifying the average price level is sufficient.  
 
 
2.1 The Regulator’s Problem  
 
There are two postal products, single-piece mail x  , consumed by individuals of type h , and 
z , bulk mail, consumed by type f  customers. Let ( )hV x  and ( )fV z  denote the consumers’ 

utilities, while the demand functions are denoted ( )xx p  and ( )zz p . Marginal costs of both 

products are constant and given by xc  and zc . In addition, the single operator has a fixed cost

F . Assume that the regulator maximizes a weighted sum of the customers’ utilities (putting a 
higher weight on type h  individuals) subject to the operator breaking even  
 max (1 ) [ ( )] [ ( )]

x z
h x f z

p p
V x p V z p




 
    

 (1 )[( ) ( ) ( ) ( ) ]x x x z z zp c x p p c z p F       (1) 

 
where 0   represents the extra weight attached to type h  individuals and   the Lagrange 
multiplier of the operator’s break-even constraint.  

Differentiating (1) with respect to xp  and zp  and rearranging the first-order conditions, 

we obtain the following expressions for the optimal prices xp  and zp  

 
( ) 1

(1 )
x x

x x

p c

p

 
 

 

 

 
 


 (2) 

 
1

(1 )
z z

z z

p c

p


 

 

 


 


 (3) 

 

where x  and z  denote the absolute values of the demand elasticities.  

These expressions reflect both efficiency and equity considerations. Like in the pure 
efficiency Ramsey pricing problem, we obtain inverse elasticity rules.2 Equations (2) and (3) 
show how the prices are affected by the welfare weights. Not surprisingly, a higher level of   
tends to reduce the price of the product consumed by households. Observe that when   is 

sufficiently large, it may be optimal to set xp  below marginal cost.  

 
2.2Pricing of the operator under price cap regulation 
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In the previous subsection, we have assumed that the regulator has full control and directly 
sets all the operator’s prices. We now show that this solution can be decentralized through a 
price-cap regulation that restricts solely the “average” level of all prices. In other words, a 
profit-maximizing operator submitted to the appropriate price cap constraint “spontaneously” 
sets the socially optimal levels of all prices. There is no need to use multiple baskets for 
which separate constraints are imposed. This property is well known for the standard Ramsey 
case where the regulator is concerned with efficiency only and does not use any welfare 
weights.3 The appropriate price cap constraint states that the weighted average of all the prices 
does not exceed a certain threshold. Observe that the weights are exogenous from the 
operator’s perspective. Specifically, the Ramsey solution is achieved when the weight 
attached to the price of a given commodity in the price cap formula corresponds to the 
socially optimal quantity of the commodity (i.e., the quantity that solves the regulator’s 
problem).4 We shall now show that this result continues to apply in the case considered in the 
previous sub-section where welfare weights are used. The argument we present is inspired by 
Billette de Villemeur et al. (2002) who obtain similar results in a different context.  

Assume that the postal operator is subject to the following price cap constraint,  

 x x z zp p p     (4) 

where x  and y  are exogenous weights while p  is a constant. A profit-maximizing operator 

then solves the following problem.  
 max ( ) ( ) ( ) ( )

x z
x x x z z z

p p
p c x p p c z p F

 
     

 ( )x x z zp p p       (5) 

 
 

Differentiating (5) with respect to xp  and zp  and rearranging the first-order conditions 

yields the following expressions for the optimal prices  xp  and zp  : 

 
1

1x x x

x x

p c a

p x




    
 

 


   (6) 

 
1

1z z z

x z

p c a

p z




    
 

 


   (7) 

 
Recall that these prices are optimal from the operator’s perspective (solution to (5)). One can 
expect these prices xp  and zp  to differ in general from the socially optimal prices xp  and zp  

determined by (2) and (3). However, xp  and zp  depend on the weights x  and z  of the 

commodities in the price cap formula. When these weights are set in an appropriate way, one 
can have *

x xp p  and *
z zp p . In other words, a profit-maximizing monopolistic operator 

will spontaneously choose the socially optimal prices provided of course that the weights are 
set at their appropriate levels.  

To establish this result formally, define 
 (1 )x x      (8) 

 z z    (9) 

 x x z zp p p      (10) 

 

It is then sufficient to compare (2)–(3) and (6)–(7) to show that * *,x x z zp p p p   , while  

 *1/ 1   .5  
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When 0   we have a standard (pure efficiency) Ramsey pricing problem, which is 
decentralized by using the optimal quantities as weights in the price-cap formula. When good 
x  receives a larger weight in the welfare function, the weight in the price cap formula has to 
be multiplied by the same factor (namely, 1  ).  

To implement this outcome directly the regulator has to know that optimal quantities. 
However, this solution can also be achieved in a more indirect way through an iterative 
procedure à la Vogelsang and Finsinger (1979).6 The idea is to set the weight of the goods in 
period t respectively equal to   11t t

x x     and 1.t t
z z   In words, the weight in period t  

is equal to the quantity produced in the previous period times the welfare weight (1   for x  
and 1 for z ).7 This algorithm works provided that the managers of the operator take the 
weights in any given period as given. In other words, they are myopic in the sense that they 
do not take into account the impact of their choice and the future design of regulation.8 
While we have established this result in the simplest possible setting, it reflects effectively a 
very general property. It depends neither on the separability of demand nor on the assumption 
that each individual only consumes a single product. The result also generalizes to the 
situation where the regulated firm is not a monopoly but competes with other operators. In 
either case, the appropriate weight of a product is given by the (partial) derivative of welfare 
with respect to its price (evaluated at the optimum solution). In the Ramsey case, the 
derivative of welfare with respect to xp  is equal to x .9 With the welfare function defined in 

(1), the derivative is (1 )x  . With more general preferences and/or under competition, the 
expressions will be more complicated, but the basic rule determining the optimal weight 
remains the same. In all cases, the single price-cap constraint is sufficient to decentralize the 
(socially) optimal pricing policy.10 
 

 
 

3 UNCERTAIN DEMAND 
 
We now turn to the second aspect that may affect the design of price cap regulation, namely 
demand uncertainty. The notion of pricing flexibility of course becomes most relevant when 
future demand is uncertain at the moment when the price cap formula is determined. This  
argues for a single price cap formula with no sub-baskets, which allows the operator to adapt 
the pricing structure to the realized demand conditions. However, there might also be the 
danger that this flexibility allows too much market power to the operator, allowing it to 
extract excess profits in some states of nature. Consequently, one can expect that there is a 
tradeoff between costs and benefits of flexibility.  

We represent this tradeoff in a simple model. Consequently, we cannot expect general 
results (such as a property that one solution always dominates the other one). However, the 
simple model brings out the different effects that are at work and illustrates the factors which 
are relevant to determine the appropriate degree of flexibility.  

 
3.1 Model of Price Caps under Uncertainty 
 
Consider an operator who sells two products, indexed by 1 2k   , whose demands, kx , are 

given by 
 k k kx p    (11) 

where k  is a random variable, while kp  denotes the price. Suppose that k L H{ }      where 
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L H  , and where both realizations have the same probability of 1 2 .11 In words, demand 

can be low or high in each of the market (which yields a total of 4 possible combinations). 
Observe that demand shocks only affect the intercept of the demand function and not its 

slope. Let ( ) ( ) 2L HE        denote the expected level of . Assume that k ’s are 

distributed independently. Marginal production costs are constant and normalized to zero. 
There is a (joint) fixed cost, F , which is independent of demand uncertainty. Using the 
demand functions (11), one easily derives the following expression for consumer surplus, CS, 
total surplus, TS, and profits,   

 
2( )

2
k k

k

p
CS

 
   (12) 

 
2( )

2
k k

k

p
TS

 
    (13) 

 ( )k k k
k

p p F      (14) 

 
 

Maximizing (14) with respect to kp  yields the (profit-maximizing) monopoly price 

2M
k kp   . The corresponding level of total profits is given by  

    2 2

1 22 2M F         (15) 

Observe for future reference that the monopoly profit is positive in the worst state of nature (

1 2 L    ) if and only if  2
2 2L F   .  

We consider two methods of regulatory pricing. The first procedure, referred to as 
administered prices, is to set both prices ex ante, while the second one is to impose a price cap 
specifying the average price ex ante, while letting the operator choose the price structure ex 
post. In other words, the operator sets both prices once demand is known, but has to respect 
the price cap constraint (imposed ex ante). We can think about the first procedure as a price 
cap with sub-baskets, while the second one corresponds to a price cap with a single basket.  

We shall now successively examine these two solutions. In either case, the regulatory 
policy is chosen ex ante and subject to the constraint that the operator’s expected profits are 
zero, that is ( ) 0E   . Consequently, (12)–(14) imply ( ) ( )E TS E CS  so that (expected) total 
surplus is measured by (expected) consumer surplus.  

 
3.2Administered prices 
 
The regulator maximizes expected surplus and sets both prices ex ante subject to the 
operator’s (expected) break-even constraint ( ) 0E   . With our symmetry assumptions, the 
solution to this problem is very simple. Demand and costs conditions for both products are 
identical ex ante. Consequently, it is plain that their prices should be equal and we have 

1 2p p p  . This price level is obtained by setting the expected value of (14) equal to zero 

and by taking the smallest root of this quadratic equation  
 2 ( )p p F     (16) 

Using equation (12)–(14) one can determine the corresponding levels of welfare 
( ) ( )E ST E SC  which is given by12 

 
 22

2 1

4
apW p

 
 
 
 


     (17) 
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3.3Price cap 
 
Suppose now that the regulator imposes a price cap defined by  

 1 2

2

p p
p


   (18) 

where p  is determined to ensure ( ) 0E   . In this formula both products obtain the same 

weight, which is the optimal policy given the symmetry of the problem. The operator sets 1p  

and 2p  ex post to maximize profits subject to (18). Depending on the realizations of demand, 

four different configurations can arise (two of which being equivalent). To determine the 
expected welfare achieved under the price cap regime, we have to determine the price set by 
the operator in the following three situations.  

Case 1: 1 L   and 2 L   

This is the most unfavorable state of nature, in which demand is low in both markets. It occurs 
with a probability of 1 4 . The operator then chooses 

 1 2 min
2
Lp p p

      
 (19) 

Given the symmetry of the demand realizations, the operator sets the same price in both 
markets. This price can either be equal to the monopoly price (under low demand), namely 

2L  , or set at the price ceiling p  (whichever of these two prices is lower). In other words, it 

is possible that the price cap set ex ante by the regulator is effectively larger than the 
monopoly price under low demand. This will happen when the revenue under low demand (

 2
2 2L  ) is significantly lower than the fixed cost, so that large losses are incurred in this 

case.13  

Case 2: 1 H   and 2 H   

This is the most favorable case, for which demand is high in both markets (and occurs with 
probability 1 4) . Once again, it follows from the symmetry of the problem that the operator 
sets the same price in both markets. It follows immediately that this price is equal to the price 
cap level 

 1 2p p p    (20) 

as long as 2Hp   , which necessarily holds when p  is set to ensure ( ) 0E   .14  

Case 3: 1 L   and 2 H   or 1 H   and 2 L   

In words, demand is low for one good and high for the other. Given the symmetry of our 
problem, these two cases are equivalent and this configuration thus occurs with a probability 
of 1 2 . The operator now chooses different prices for the two products. Maximizing the 
operator’s profit (14) subject to the price cap (18) yields 

 
2

k
kp p

 
    (21) 

Not surprisingly, the price is an increasing function of k  so that it will be larger in the market 

with high demand than in the market with low demand. Welfare in this case is given by  
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    22
2 19

64
LHW p

 



    (22) 

Using (22) along with the welfare levels implied by the prices defined by (19) and (20) and 
weighting with the respective probabilities, one can then determine the level of expected 
welfare associated with the price cap policy, pcW . As illustrated in the next section, this 
welfare level can then be compared with the level of welfare achieved in the administered 
prices regime, namely apW  given by equation (17).  

While these welfare comparisons are complex, expression (21) suggests that the 
increased flexibility the operator enjoys in the price cap regime may in fact also benefit the 
customers. Indeed, it shows that prices better reflect demand conditions than under the other 
policy; they are higher when demand is high and lower when demand is low and this is what 
an efficient pricing policy calls for. Furthermore, one obtains an unambiguous analytical 
result comparing the expected price level under the two policies. A simple argument shows 
that p p .15 In other words, the larger flexibility allows break-even (coverage of fixed 
costs) with a smaller expected price level.  

We now turn to the numerical illustration which shows that the (single basket) price cap 
policy can effectively yield a higher welfare while pointing out more clearly than the 
analytical expression how this result comes about.  

 
3.4 Numerical example 
 
Let 5L  , 15H   and 50F    Solving the break even constraint (16) yields 5p   (as 

unique root). With this price, one easily calculates consumer surplus in the different states of 
nature: 0 for LL , 100 for HH  and 50 for LH  or HL . Consequently, expected surplus is 
given by (0 100 2 50) 4 50     ; this value can also be directly obtained from (17).  
 

Price cap   
State of nature  

1p   2p   1x   2x   1CS   2CS      TS    

LL   2  5  2  5  2  5  2  5  3  1  3  1  - 37  5  - 31  3  

HH   3  2  3  2  11  8  11  8 69  7  69  7  25  5  164  8  
LH   0  7  5  7  4  3  9  3  9  3  43  3  6  0  58  5  
Expected  3  0  3  0  7  0  7  0  31  3  31  3  0  0  62  6  

Administered prices   
State of nature  

1 2p p p     1x   2x   1CS   2CS      TS    

LL   5 0   0  0  0  0  0  0  0  0  - 50  0  - 50  0  
HH   5 0   10  0  10  0  50  0  50  0  50  0  150  0  
LH   5 0   0  0  10  0  0  0  50  0  0  0  50  0  
Expected  5 0   5  0  5  0  25  0  25  0  0  0  50  0  

Table 1. Allocations in the different states of nature under the price cap (with 3 2p   ) and 
administered prices regime  

 
 

Computations are more involved for the case of a price cap. Using the various 
expressions derived in previous subsection, one can determine first that 3 2p    yields

( ) 0E   . This confirms the result that p p . With all prices above marginal cost, a lower 
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expected price opens the door to the possibility of having a larger surplus under price cap. 

Observe that we have 2 2 5Lp      (monopoly price with low demand LL ). In words, when 

the demand is low in both markets, the operator will want to set both prices below the price 
cap (so that the constraint is effectively not binding).  

With simple numerical calculations, one can then determine the level of consumer 
surplus in the different states of nature: 6.25 for LL , 139.3 for HH  and 52.5 for LH  and 
HL . Consequently, the expected surplus is given by (6 25 139 3 2 52 5) 4 62 67          which 
is effectively higher than the expected surplus achieved when prices are set ex ante (namely 
50). The results of this numerical illustration are summarized in Table 1.  

This finding confirms the conjecture suggested by the analytical results presented in the 
previous subsection, namely that the expected welfare (consumer surplus) may be higher 
under a price cap with a single basket than when sub baskets are imposed ex ante. As a matter 
of fact in the case presented in Table 1, the price cap regime gives a higher welfare (total 
surplus) in all states of nature. Furthermore, the example helps us understand why this result 
emerges. The single price cap has two advantages. First, the average price is smaller (recall 
that this is a general property). Second, the price can be adapted to reflect demand conditions. 
While this is always true, this may or may not be welfare enhancing in all possible states of 
nature. In our example, it turns out that the enhanced flexibility effectively benefits consumers 

in all states of nature; see Table 1. Observe that because 3 2 2 2 5Lp       , the expected 

price under the price cap regime (namely 3) is effectively below p . This property will occur 
whenever the monopoly price in the least favorable state of nature for the operator is below 
the price cap.  

 
 

4 CONCLUSION 
 
We have examined the design of price cap schemes in the postal sector and have analyzed 
whether or not it is appropriate to impose “sub-baskets”. The imposition of such sub-baskets 
is sometimes justified by considerations of redistribution and the concern to “protect” certain 
groups of customers. Accordingly, we have first looked at a setting where some customers (or 
products) receive an extra weight in the regulator’s objective. We have shown that the socially 
optimal price structure can be decentralized through a price-cap regulation that restricts solely 
the “average” level of all prices. The appropriate price cap constraint states that the weighted 
average of all the prices does not exceed a certain threshold. While we have obtained this 
result in a simple setting, we have argued that the decentralization result, as well as the basic 
rule determining the optimal weight, remains the same with more general preferences and/or 
under competition. In all cases, the single price-cap constraint is sufficient to decentralize the 
(socially) optimal pricing policy. Formally, achieving this result requires that the regulator 
know the socially optimal quantities, but we also showed that the Vogelsang-Finsinger 
iterative approach can be used to converge to these optimal quantities, subject to the usual 
assumption of nonstrategic behavior on the part of the regulated firm. 

Second, we have examined the role of demand uncertainty. In this context, sub-baskets 
introduce ex ante constraints on the pricing structure which can prevent the operator from 
abusing market power in some states of nature. However, they reduce the possibility ex post 
to adapt relative prices to the realized structure of demand. We have shown that while the 
overall effect appears to be ambiguous, a number of arguments plead against the imposition of 
sub-baskets. In particular, we have shown that ex ante constraints tend to increase the overall 
price level. Furthermore, they may prevent the price from being adapted to demand 
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conditions.  
The two sections thus lead to similar conclusions and argue in favor of a price-cap with 

a single basket. In other words, the constraint should cap the (appropriately weighted) average 
price of all regulated products.  
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good. 
3See Laffont et Tirole (2000), page 67. 
4When the optimal quantity is not known, the same result can be achieved through an iterative procedure under 
which the price in period t is weighted by the quantity sold in period t-1 ; see Vogelsang et Finsinger (1979). 
5The weights defined by (8) and (9) generally do not add up to one. However, this is just a matter of 
normalization. To ensure that the sum of the weights equals one, it is sufficient to divide both sides of (4) by 
ሺߙ௫ ൅  .௭ሻߙ
6 We thank John Panzar for bringing this property to our attention.  
7 The price cap ̅݌ is set so that   ̅݌௧ ൌ ௫௧ିଵ݌௫௧ߙ ൅  .௭௧ିଵ݌௭௧ߙ
8 The proof of this property follows directly from the proof of Proposition 1 in Vogelsang and Finsinger (1979). 
To accommodate the welfare weights one simply has to realize that the gradient of welfare (denoted grad W(p) in 
their proof) is now equal to the vector of quantities multiplied by the respective welfare weights. This follows 
from Roy’s identity and the property that with quasi-linear preferences the marginal utility of income is equal to 
one. 
9 To see this, recall the discussion in footnote 7.  
10 It is plain that the result remains valid when there is a competitive fringe. Under imperfect competition the 
Ramsey problem is more complex because the other operator's equilibrium prices are affected by the regulated 
operator's prices. This problem is studied for instance by Ware and Winter (1986) under various assumption 
regarding the strategic interaction between operators (Stackelberg or Nash). One can easily show that their 
expressions can be decentralized by a price cap regulation with suitably designed weights. However, it is an open 
question at this point whether one can design an iterative procedure that converges to these weights.     
11This specification is inspired by Laffont and Tirole (2000), p. 93–94. They introduce the demand functions 
(11) to study the impact of asymmetric information pertaining to the demand level. In their setting, ߠ௅ applies to 
one product and ߠு to the other. [This is] Demand levels are observed by the operator but not by the regulator. 
12Since we provide numerical illustrations below, we will refrain from reporting a full set of analytical 
expressions. Some of them are quite lengthy and their inspection is not very insightful. 
13When the maximum profit with low demand in both markets is positive ሺ2ሺߠ௅ 2⁄ ሻଶ ൐  ሻ, we necessarily haveܨ
̅݌ ൏ ௅ߠ 2⁄ . However, in the opposite case ሺ2ሺߠ௅ 2⁄ ሻଶ ൏ ̅݌ ሻ, we can haveܨ ൐ ௅ߠ 2⁄ . 
 
14A price cap exceeding the monopoly price in the most favorable demand condition ሺ̅݌ ൐ ுߠ 2⁄ ሻ would be a 
would be a completely empty constraint that is never binding. 
15By definition  ݌∗ implies  ܧሺߨሻ ൌ 0. When ̅݌ ൌ  in all states of ̅݌ the operator has the option to set the price ,∗݌
nature (and realize a profit of zero). As our various pricing expressions show, this is of course not the optimal 
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policy. By adopting this optimal policy, the operator can then realize a strictly positive profit. Consequently, to 
achieve ܧሺߨሻ ൌ  .∗݌  can be set below ̅݌ ,0


